Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les bases du traitement d'images pour la microscopie, y compris l'acquisition, la correction des défauts, l'amélioration des images et l'extraction d'informations.
Se penche sur la formation et les applications des modèles Vision-Language-Action, en mettant l'accent sur le rôle des grands modèles linguistiques dans le contrôle robotique et le transfert des connaissances web. Les résultats des expériences et les orientations futures de la recherche sont mis en évidence.
Couvre les principes fondamentaux du traitement de l'image scientifique, les pratiques logicielles et les considérations éthiques dans le traitement de l'image.
Explore les défis et les solutions pour gérer la dose d'électrons en microscopie, en soulignant l'importance d'un suivi et d'une analyse précis des doses.
Se penche sur le choix d'une taille de caractéristique appropriée pour l'analyse d'images dans les sciences de la vie, présentant une règle de pouce pour définir la taille de l'objet en pixels.
Introduit des bases de traitement d'image en Python, couvrant la manipulation, la conversion à l'échelle grise, la détection des bords et la convolution avec les noyaux.