Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les concepts fondamentaux de l'apprentissage automatique, y compris la classification, les algorithmes, l'optimisation, l'apprentissage supervisé, l'apprentissage par renforcement et diverses tâches telles que la reconnaissance d'images et la génération de texte.
Explore l'intelligence visuelle, la formation d'images, la vision par ordinateur et la compréhension de la représentation dans les machines et les esprits.
Explore les réseaux neuronaux convolutifs pour la classification des images, en se concentrant sur les défis de poids, les stratégies de prévention de surajustement et les modèles pré-entraînés.
Se concentre sur l'application pratique de la corrélation d'images numériques pour les ingénieurs civils, couvrant la mesure des champs de déplacement et le calcul des champs de contrainte.
Explore l'histoire, l'architecture et les spécifications des capteurs d'images optiques, y compris les techniques de suppression du bruit et les méthodes de mesure.
Explore la moyenne de voisinage, le lissage gaussien, le filtrage médian, l'amélioration du contraste et la détection des bords dans le traitement d'image.
Explore la suppression du bruit, la mesure des capteurs, la portée dynamique, les microlentilles et les détecteurs monophotons dans les capteurs d'images optiques.