Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les règles de voisinage les plus proches, les défis de l'algorithme k-NN, le classificateur Bayes et l'algorithme k-means pour le regroupement.
Déplacez-vous dans les probabilités, les statistiques, les expériences aléatoires et l'inférence statistique, avec des exemples pratiques et des idées.
Explore les modèles de préformation comme BERT, T5 et GPT, en discutant de leurs objectifs de formation et de leurs applications dans le traitement des langues naturelles.
Explore le modèle Transformer, des modèles récurrents à la PNL basée sur l'attention, en mettant en évidence ses composants clés et ses résultats significatifs dans la traduction automatique et la génération de documents.
Explore l'évolution des mécanismes d'attention vers les transformateurs dans les NLP modernes, en soulignant l'importance de l'auto-attention et de l'attention croisée.
Explore un cadre unifié pour la compréhension et l'évaluation de modèles de séquences génériques d'ADN/ARN ou de protéines, couvrant des sujets tels que la coévolution, la conservation et différents modèles tels que GREMLIN et BERT.