Explore les méthodes d'optimisation primal-dual, en mettant l'accent sur les techniques de gradient lagrangien et leurs applications dans l'optimisation des données.
Couvre les concepts fondamentaux de l'optimisation et de la recherche opérationnelle, en explorant des exemples du monde réel et des sujets clés sur un semestre.
Couvre la modélisation et l'optimisation des systèmes énergétiques, en se concentrant sur la résolution de problèmes d'optimisation avec des contraintes et des variables.
Couvre l'algorithme Branch & Bound pour une exploration efficace des solutions possibles et discute de la relaxation LP, de l'optimisation du portefeuille, de la programmation non linéaire et de divers problèmes d'optimisation.