Couvre les défis de classification d'images, les concepts d'apprentissage automatique, la régression linéaire et l'approche voisine la plus proche dans les véhicules autonomes.
Explore les courbes de double descente et la surparamétrisation dans les modèles d'apprentissage automatique, en soulignant les risques et les avantages.
Discute des arbres de décision et des forêts aléatoires, en se concentrant sur leur structure, leur optimisation et leur application dans les tâches de régression et de classification.
Discute des arbres de régression, des méthodes d'ensemble et de leurs applications dans la prévision des prix des voitures d'occasion et des rendements des stocks.
Explore le surajustement, la validation croisée et la régularisation dans l'apprentissage automatique, en mettant l'accent sur la complexité du modèle et l'importance de la force de régularisation.
Explore les classificateurs voisins les plus proches, le compromis entre les biais, la malédiction de la dimensionnalité et les limites de généralisation dans l'apprentissage automatique supervisé.
Discuter de la façon dont l'apprentissage de caractéristiques éparses peut conduire à une suradaptation dans les réseaux neuraux malgré des preuves empiriques de généralisation.