Explore les lexiques, les n-grammes et les modèles de langage, soulignant leur importance dans la reconnaissance des mots et l'efficacité des n-grammes pour diverses tâches.
Explore les probabilités avancées, les variables aléatoires et les valeurs attendues, avec des exemples pratiques et des quiz pour renforcer l'apprentissage.
Couvre des modèles thématiques, en se concentrant sur l'allocation de Dirichlet latente, le regroupement, les MGM, la distribution de Dirichlet, l'apprentissage LDA et les applications en humanités numériques.
Explorer l'analyse de la pollution atmosphérique à l'aide de données sur le vent, de distributions de probabilités et de modèles de trajectoire pour l'évaluation de la qualité de l'air.
Introduit l'estimation bayésienne, qui couvre l'inférence classique par rapport à l'inférence bayésienne, les antécédents conjugués, les méthodes MCMC et des exemples pratiques comme l'estimation de la température et la modélisation de choix.