Techniques d'optimisation : Convexity in Machine Learning
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit les principes fondamentaux de l'optimisation convexe, en soulignant l'importance des fonctions convexes dans la simplification du processus de minimisation.
Explore l'apprentissage en apprentissage profond pour les véhicules autonomes, couvrant les modèles prédictifs, RNN, ImageNet, et l'apprentissage de transfert.
Explore les méthodes d'optimisation dans l'apprentissage automatique, en mettant l'accent sur les gradients, les coûts et les efforts informatiques pour une formation efficace des modèles.
Explore des méthodes d'optimisation telles que la descente de gradient et les sous-gradients pour la formation de modèles d'apprentissage automatique, y compris des techniques avancées telles que l'optimisation d'Adam.
Couvre les techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la convexité, les algorithmes et leurs applications pour assurer une convergence efficace vers les minima mondiaux.
Explore l'apprentissage machine contradictoire, couvrant la génération d'exemples contradictoires, les défis de robustesse et des techniques telles que la méthode Fast Gradient Sign.