Explore l'optimisation des systèmes neuroprothétiques, y compris la restauration de rétroaction sensorielle et les stratégies de stimulation neuronale.
Met l'accent sur la mise en œuvre d'un générateur de fonctions carrées utilisant la technologie Speedgoat FPGA et les techniques de traitement du signal en temps réel.
Explore les signaux neuraux, le traitement EMG, les synergies musculaires et le contrôle de la prothèse à l'aide de techniques avancées de traitement des signaux.
Explore la densité spectrale de puissance, le théorème de Wiener-Khintchine, l'ergonomie et l'estimation de corrélation dans les signaux aléatoires pour le traitement du signal.
Couvre l'analyse des données sur la pollution atmosphérique, en se concentrant sur les bases de R, en visualisant des séries chronologiques et en créant des résumés des concentrations de polluants.
Explore le traitement du signal neuronal pour les interfaces cerveau-ordinateur, y compris les techniques de décodage comme les filtres Kalman et le tri des pics.