Confidentialité des données dans la recherche en cybersanté
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les outils de science des données, Hadoop, Spark, les écosystèmes des lacs de données, le théorème CAP, le traitement par lots vs. flux, HDFS, Hive, Parquet, ORC, et l'architecture MapReduce.
Explore l'évolution historique et les aspects juridiques des lois sur la protection des données, des instruments internationaux, des défis du suivi en ligne, des bases juridiques pour le traitement des données à caractère personnel et des règles de confidentialité.
Explore les signaux de débruitage avec des modèles de mélange gaussien et l'algorithme EM, l'analyse de signal EMG et la segmentation d'image à l'aide de modèles markoviens.
Explore les risques liés à la protection de la vie privée dans la publication des données, les tentatives ratées de désidentification et l'utilisation de données synthétiques pour la protection de la vie privée.
Explore la création de tableaux de bord dans ServiceNow, en mettant l'accent sur les avantages, la transition des pages d'accueil et des concepts importants comme les tâches et les incidents.
Explore la conception et l'exploitation des réservoirs et des barrages, en mettant l'accent sur la plate-forme de construction hydraulique Manso & De Cesare.
Explore la combinaison de données au repos avec des données en mouvement, en mettant l'accent sur les complexités de l'architecture Lambda et l'évaluation de la qualité des flux et des lots.
Explore la Décomposition de la Valeur Singulière et son rôle dans l'apprentissage non supervisé et la réduction de dimensionnalité, en mettant l'accent sur ses propriétés et applications.