Confidentialité des données dans la recherche en cybersanté
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre l'analyse en composantes principales pour la réduction dimensionnelle des données biologiques, en se concentrant sur la visualisation et l'identification des modèles.
Déplacez-vous dans la protection de la vie privée analyse fédérée pour la médecine personnalisée, discuter des défis, des solutions, et des applications du monde réel.
Couvre les mécanismes de protection de la vie privée, leurs avantages et leurs inconvénients, et leur application dans divers scénarios, en mettant l'accent sur la protection de la vie privée en tant que bien de sécurité et son importance dans la société.
Examine les risques et les techniques liés à la désanonymisation des données, y compris les lacunes dans les méthodes et les exemples réels de tentatives infructueuses.
Couvre les lois suisses sur la protection des données, y compris la loi fédérale sur la protection des données et les rôles définis dans la législation.
Couvre la sphère de la protection de la vie privée, la protection des données, les risques d'abus de données, les lois et les cas de violation du monde réel.
Explore les défis de la publication de données préservant la vie privée, y compris les exemples de désidentification et les menaces pour la vie privée, et présente une étude de cas sur les efforts d'Airbnb pour lutter contre les pratiques racistes tout en protégeant la vie privée des utilisateurs.
Explore la sécurité de l'apprentissage automatique, y compris le vol de modèles, la modification des extrants, les conditions conflictuelles et les défis liés à la protection de la vie privée, soulignant l'importance de corriger les biais dans les modèles d'apprentissage automatique.