Transformateurs : Architecture complète et mécanisme d'auto-attention
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Se penche sur la formation et les applications des modèles Vision-Language-Action, en mettant l'accent sur le rôle des grands modèles linguistiques dans le contrôle robotique et le transfert des connaissances web. Les résultats des expériences et les orientations futures de la recherche sont mis en évidence.
Explore les mathématiques des modèles de langues, couvrant la conception de l'architecture, la pré-formation et l'ajustement fin, soulignant l'importance de la pré-formation et de l'ajustement fin pour diverses tâches.
Introduit des concepts d'apprentissage profond pour les NLP, couvrant l'intégration de mots, les RNN et les Transformateurs, mettant l'accent sur l'auto-attention et l'attention multi-têtes.
Explore l'apprentissage profond pour la PNL, en couvrant les insertions de mots, les représentations contextuelles, les techniques d'apprentissage et les défis tels que les gradients de disparition et les considérations éthiques.
Explore les modèles de préformation comme BERT, T5 et GPT, en discutant de leurs objectifs de formation et de leurs applications dans le traitement des langues naturelles.
Explore le développement d'intégrations contextuelles dans le NLP, en mettant l'accent sur les progrès réalisés par ELMo et BERT et son impact sur les tâches du NLP.
Explore le modèle Transformer, des modèles récurrents à la PNL basée sur l'attention, en mettant en évidence ses composants clés et ses résultats significatifs dans la traduction automatique et la génération de documents.