Contient les CNN, les RNN, les SVM et les méthodes d'apprentissage supervisé, soulignant l'importance d'harmoniser la régularisation et de prendre des décisions éclairées dans le domaine de l'apprentissage automatique.
Couvre la classification des images, le clustering et les techniques d'apprentissage automatique telles que la réduction de la dimensionnalité et l'apprentissage par renforcement.
Explore PCA et LDA pour la réduction de dimensionnalité linéaire dans les données, en mettant l'accent sur les techniques de clustering et de séparation de classe.
Explore les techniques de regroupement de comportement et de réduction de dimensionnalité non supervisées, couvrant des algorithmes comme K-Means, DBSCAN et Gaussian Mixture Model.
Explore la formation, l'optimisation et les considérations environnementales des réseaux neuronaux, avec des informations sur les clusters PCA et K-means.
Les couvertures comportent des méthodes d'extraction, de regroupement et de classification pour les ensembles de données de grande dimension et l'analyse comportementale utilisant PCA, t-SNE, k-means, GMM et divers algorithmes de classification.
Introduit des modèles linéaires pour l'apprentissage supervisé, couvrant le suréquipement, la régularisation et les noyaux, avec des applications dans les tâches d'apprentissage automatique.
Introduit des réseaux de neurones artificiels et explore diverses techniques de réduction de la dimensionnalité telles que PCA, LDA, Kernel PCA et t-SNE.