Couvre les meilleures pratiques et les lignes directrices pour les mégadonnées, y compris les lacs de données, l'architecture, les défis et les technologies comme Hadoop et Hive.
Explore les possibilités de transformation numérique, les mégadonnées, l'analyse et les innovations technologiques dans le domaine des affaires et de la recherche.
Couvre les fondamentaux des écosystèmes de big data, en se concentrant sur les technologies, les défis et les exercices pratiques avec le HDFS d'Hadoop.
Couvre les outils de science des données, Hadoop, Spark, les écosystèmes des lacs de données, le théorème CAP, le traitement par lots vs. flux, HDFS, Hive, Parquet, ORC, et l'architecture MapReduce.
Couvre les pratiques exemplaires et les lignes directrices pour les mégadonnées, y compris les lacs de données, l'architecture typique, les défis et les technologies utilisés pour y remédier.
Introduit le cours d'analyse des données appliquées à l'EPFL, couvrant un large éventail de sujets d'analyse des données et mettant l'accent sur l'apprentissage continu en sciences des données.