Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'extraction de texte de données à longue queue dans les neurosciences et la connectivité cérébrale, y compris la reconnaissance d'entités nommées, l'extraction de la concentration de protéines et la comparaison des matrices de connectivité.
Couvre l'intégration des données, l'appariement d'experts, la reconnaissance des entités, les performances, l'évolutivité, la gestion des données de flux, la décomposition des tenseurs et la détection de la dérive conceptuelle.
Couvre les données neurosciences hétérogènes, les techniques comme les microarrays et le séquençage des gènes, l'intégration des données, et l'importance des métadonnées dans l'organisation et le partage des données.
Explore les entrepôts de données, les systèmes d'aide à la décision, OLAP, les lacs de données, les modèles de données multidimensionnels et les optimisations de requêtes.
Explore les complexités de la numérisation des documents urbains historiques et souligne l'importance de relier l'information pour une analyse complète.
Couvre l'introduction et les défis des entrepôts de données, y compris l'intégration des données, la gestion des métadonnées et l'optimisation des performances des requêtes.