Explore la résolution du problème Poisson en utilisant la transformée de Fourier, en discutant des termes sources, des conditions aux limites et de l'unicité de la solution.
Explore la modélisation des éléments finis en mécanique structurale, couvrant la convergence, le déplacement non linéaire et les lois d'échelle dans les micro et nanosystèmes.
Explore le transport soluté dans les milieux poreux, couvrant les équations advection-diffusion, les conditions limites, les réactions et la modélisation numérique dans PHREEQC.
Explore le problème de Poisson avec les conditions limites de Neumann et les conditions limites périodiques dans la modélisation mathématique et la dynamique des fluides.
Explore les effets de transport dans la catalyse hétérogène, y compris la diffusion moléculaire et la diffusion Knudsen dans différents types de pores.
Introduit la statique linéaire pour les solides élastiques linéaires dans les petites déformations, l'équilibre des contraintes, le principe de travail virtuel et la méthode des éléments finis.