Explore les schémas implicites dans l'analyse numérique, en mettant l'accent sur les propriétés de stabilité et de convergence dans la résolution des équations différentielles.
Explore la stabilité zéro et la stabilité absolue dans les méthodes numériques, y compris Forward Euler, Backward Euler, Crank-Nicolson, et les méthodes Heun.
Explique le schéma implicite d'Euler, une méthode de résolution numérique des équations différentielles, axée sur les propriétés de stabilité et de convergence.
Explore explicitement les méthodes de Runge-Kutta stabilisées et leur application aux problèmes inverses bayésiens, couvrant l'optimisation, l'échantillonnage et les expériences numériques.
Discute des différences finies et des éléments finis, en se concentrant sur la formulation variationnelle et les méthodes numériques dans les applications d'ingénierie.