Introduit l'apprentissage non supervisé en cluster avec les moyennes K et la réduction de dimensionnalité à l'aide de PCA, ainsi que des exemples pratiques.
Présente les réseaux neuronaux convolutifs, en expliquant leur architecture, leur processus de formation et leurs applications dans les tâches de segmentation sémantique.
Discute des réseaux neuronaux convolutifs, de leur architecture, des techniques de formation et des défis tels que des exemples contradictoires en apprentissage profond.
Couvre les principes fondamentaux de l'apprentissage profond, y compris les données, l'architecture et les considérations éthiques dans le déploiement de modèles.
Couvre les bases de l'apprentissage profond, y compris les représentations de données, le sac de mots, le prétraitement des données, les réseaux de neurones artificiels et les réseaux de neurones convolutifs.
Couvre les réseaux neuronaux convolutionnels, y compris les couches, les stratégies de formation, les architectures standard, les tâches comme la segmentation sémantique, et les astuces d'apprentissage profond.