Introduit des perceptrons multicouches (MLP) et couvre la régression logistique, la reformulation, la descente de gradient, AdaBoost et les applications pratiques.
Explore les fondamentaux de régression logistique, y compris les fonctions de coût, la régularisation et les limites de classification, avec des exemples pratiques utilisant scikit-learn.
Explore la régression logistique pour prédire les proportions de la végétation dans la région amazonienne grâce à l'analyse des données de télédétection.