Explore les modèles de préformation comme BERT, T5 et GPT, en discutant de leurs objectifs de formation et de leurs applications dans le traitement des langues naturelles.
Explore l'optimisation des réseaux neuronaux, y compris la rétropropagation, la normalisation des lots, l'initialisation du poids et les stratégies de recherche d'hyperparamètres.
Explore le décodage à partir de modèles neuronaux dans le NLP moderne, couvrant les modèles encodeurs-décodeurs, les algorithmes de décodage, les problèmes avec le décodage argmax, et l'impact de la taille du faisceau.
Explore le modèle Transformer, des modèles récurrents à la PNL basée sur l'attention, en mettant en évidence ses composants clés et ses résultats significatifs dans la traduction automatique et la génération de documents.
Explique l'architecture complète des Transformateurs et le mécanisme d'auto-attention, en soulignant le changement de paradigme vers l'utilisation de modèles complètement préformés.