Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Déplacez-vous dans la façon dont la structure et le fonctionnement biologiques sont décodés par l'apprentissage non supervisé des séquences protéiques.
Explore le décodage à partir de modèles neuronaux dans le NLP moderne, couvrant les modèles encodeurs-décodeurs, les algorithmes de décodage, les problèmes avec le décodage argmax, et l'impact de la taille du faisceau.
Explore l'apprentissage profond pour la PNL, en couvrant les insertions de mots, les représentations contextuelles, les techniques d'apprentissage et les défis tels que les gradients de disparition et les considérations éthiques.
Explore le modèle Transformer, des modèles récurrents à la PNL basée sur l'attention, en mettant en évidence ses composants clés et ses résultats significatifs dans la traduction automatique et la génération de documents.
Explore la prévision des trajectoires dans les véhicules autonomes, en mettant l'accent sur les modèles d'apprentissage profond pour prédire les trajectoires humaines dans les scénarios de transport socialement conscients.
En savoir plus sur l'apprentissage profond pour le traitement des langues naturelles, l'exploration de l'intégration des mots neuraux, des réseaux neuraux récurrents et de la modélisation des neurones avec les transformateurs.
Déplacez-vous dans des représentations neuro-symboliques pour la connaissance du sens commun et le raisonnement dans les applications de traitement du langage naturel.