Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'importance de la randomisation dans la spectrométrie de masse des protéines et la protéomique, en soulignant son rôle dans la minimisation des biais et la garantie de la validité de la recherche.
Explore la correspondance en ligne dans des environnements en évolution, en abordant les défis et les solutions pour adapter les algorithmes à l'évolution des données.
S'insère dans la conception expérimentale en génomique, mettant l'accent sur la réplication, la randomisation et le blocage pour réduire le biais et contrôler la variation.
Explore l'optimisation des opérations de jointure dans les systèmes distribués, la correction de l'asymétrie et l'introduction de l'algorithme 1-Bucket-Theta.
Introduit la probabilité, les statistiques, les distributions, l'inférence, la probabilité et la combinatoire pour étudier les événements aléatoires et la modélisation en réseau.
Explore les tests de randomisation comme une alternative aux tests t pour l'analyse expérimentale, en utilisant de fausses données pour évaluer l'efficacité du traitement.