Introduit l'optimisation convexe à travers des ensembles et des fonctions, couvrant les intersections, exemples, opérations, gradient, Hessian, et applications du monde réel.
Couvre des méthodes de descente de gradient plus rapides et une descente de gradient projetée pour une optimisation contrainte dans l'apprentissage automatique.
Explore la dualité conjuguée dans l'optimisation convexe, couvrant les hyperplans faibles et soutenants, les sous-gradients, l'écart de dualité et les conditions de dualité fortes.
Discute des techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la descente de gradient stochastique et ses applications dans les problèmes contraints et non convexes.