Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre l'interprétation probabiliste de la régression logistique, la régression multinomiale, le KNN, les hyperparamètres et la malédiction de la dimensionnalité.
Couvre les problèmes de surajustement, de sélection de modèle, de validation, de validation croisée, de régularisation, de régression du noyau et de représentation des données.
Explore les mesures de surajustement et de précision dans la classification des images, en soulignant limportance de la généralisation du modèle et de la précision optimale.
Explore les protocoles d'évaluation dans l'apprentissage automatique, y compris le rappel, la précision, la précision et la spécificité, avec des exemples du monde réel comme les tests COVID-19.
Couvre l'interprétation des estimations du risque de validation croisée et la construction d'un prédicteur final à partir des résultats de validation croisée.
Explore les règles d'association dans l'extraction de données, y compris les mesures, les techniques et les algorithmes pour l'extraction efficace des règles.