Discute du surajustement, de la sélection des modèles, de la validation croisée, de la régularisation, des représentations de données et de la gestion des données déséquilibrées dans l'apprentissage automatique.
Couvre la théorie et les applications de la coloration graphique, en se concentrant sur les modèles de blocs stochastiques dissortatifs et la coloration plantée.
Explore Markov Chain Monte Carlo pour l'échantillonnage des distributions haute dimension et l'optimisation des fonctions à l'aide de l'algorithme Metropolis-Hastings.
Couvre un examen des concepts d'apprentissage automatique, y compris l'apprentissage supervisé, la classification vs régression, les modèles linéaires, les fonctions du noyau, les machines vectorielles de soutien, la réduction de la dimensionnalité, les modèles génératifs profonds et la validation croisée.