Explore l'optimisation des réseaux neuronaux, y compris la rétropropagation, la normalisation des lots, l'initialisation du poids et les stratégies de recherche d'hyperparamètres.
Couvre les principes fondamentaux de l'apprentissage profond, y compris les données, l'architecture et les considérations éthiques dans le déploiement de modèles.
Explore la relation entre la fluctuation des valeurs Q dans le SARSA et l'équation de Bellman par le biais des attentes et de la constance des politiques.
Explore la dynamique d'apprentissage des réseaux neuronaux profonds en utilisant des réseaux linéaires pour l'analyse, couvrant les réseaux à deux couches et à plusieurs couches, l'apprentissage autosupervisé et les avantages de l'initialisation découplée.
Couvre les bases des réseaux neuronaux convolutionnels, y compris l'optimisation de la formation, la structure des couches et les pièges potentiels des statistiques sommaires.
Discute du gradient des politiques et des méthodes acteurs-critiques, en se concentrant sur les traces d'éligibilité et leur application dans les tâches d'apprentissage de renforcement.
Plongez dans l'importance des fonctionnalités, de l'évolution des modèles, des défis d'étiquetage et de la sélection des modèles dans l'apprentissage automatique.
Couvre les techniques d'apprentissage par renforcement profond pour un contrôle continu, en se concentrant sur les méthodes d'optimisation des politiques proximales et leurs avantages par rapport aux approches de gradient de politique standard.