Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les outils de science des données, Hadoop, Spark, les écosystèmes des lacs de données, le théorème CAP, le traitement par lots vs. flux, HDFS, Hive, Parquet, ORC, et l'architecture MapReduce.
Introduit les principes fondamentaux du traitement des données, soulignant l'importance des Pandas et de la modélisation des données pour une analyse efficace.
Couvre efficacement l'optimisation de joint accéléré GPU pour les requêtes complexes, en se concentrant sur l'amélioration des temps d'optimisation et de la qualité du plan heuristique.
Explore l'organisation de la mémoire, la virtualisation, l'attribution dynamique de la mémoire, la pile, le tas et les techniques de virtualisation de la mémoire comme le registre de base et la segmentation.
Explore l'évolution et la taxonomie des souvenirs, en se concentrant sur les différences SRAM et DRAM, la disposition de la mémoire et la taxonomie fonctionnelle.
Couvre l'utilisation de l'iPad et du tableau noir pour les étudiants distants et souligne l'importance d'outils efficaces pour l'apprentissage en ligne.