Gradient Descent sur les réseaux neuraux ReLU à deux niveaux
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la dynamique d'apprentissage des réseaux neuronaux profonds en utilisant des réseaux linéaires pour l'analyse, couvrant les réseaux à deux couches et à plusieurs couches, l'apprentissage autosupervisé et les avantages de l'initialisation découplée.
Introduit un cadre fonctionnel pour les réseaux neuronaux profonds avec des splines adaptatives linéaires à la pièce, mettant l'accent sur la reconstruction de l'image biomédicale et les défis des splines profondes.
Couvre la préparation pour dériver l'algorithme Backprop dans des réseaux en couches en utilisant des perceptrons multicouches et la descente de gradient.
Plongez dans les bases de l'apprentissage par renforcement, en discutant des états, des actions, des récompenses, des politiques et des applications de réseaux neuronaux.
Couvre la dérivation de la formule de descente de gradient stochastique pour un perceptron simple et explore l'interprétation géométrique de la classification.