Couvre les principes de la synchronisation dans le calcul parallèle, en mettant l'accent sur la synchronisation de la mémoire partagée et différentes méthodes comme les verrous et les barrières.
Explore les principes de synchronisation à l'aide de verrous et de barrières, en mettant l'accent sur des implémentations matérielles efficaces et des mécanismes de coordination tels qu'OpenMP.
Couvre les bases de la programmation parallèle, y compris la concurrence, les formes de parallélisme, la synchronisation et les modèles de programmation tels que PThreads et OpenMP.
Introduit les fondamentaux de l'architecture multiprocesseur, couvrant les serveurs post-Moore, les datacenters durables, la programmation parallèle et l'utilisation du GPU.
Explore le parallélisme dans la programmation, en mettant l'accent sur les compromis entre la programmabilité et la performance, et introduit la programmation parallèle en mémoire partagée à l'aide d'OpenMP.
Explore la motivation et les avantages de l'utilisation des GPU pour le calcul, en se concentrant sur leurs performances et leur programmation via CUDA.
Couvre l'architecture multiprocesseurs, l'informatique durable, l'impact de la formation sur les modèles d'IA et les principes fondamentaux de la programmation parallèle.