Déplacez-vous dans les techniques avancées d'optimisation Spark, en mettant l'accent sur la partition des données, les opérations de shuffle et la gestion de la mémoire.
Introduit les bases de la science des données, couvrant les arbres de décision, les progrès de l'apprentissage automatique et l'apprentissage par renforcement profond.
Couvre les bases de Python, les fonctions et les applications pratiques pour les ingénieurs, en mettant l'accent sur la manipulation des données, la programmation fonctionnelle et les structures de données.
Introduit des outils collaboratifs de science des données comme Git et Docker, en mettant l'accent sur le travail d'équipe et les exercices pratiques pour un apprentissage efficace.