Séance de cours

Deep Learning : Détection de périphérie et réseaux neuronaux

Séances de cours associées (32)
Estimation de la pose à la main
Couvre l'estimation de la pose de la main, les techniques de régression et l'évolution des modèles de classification d'images de LeNet à VGG19.
Les principes fondamentaux de l'apprentissage profond
Introduit un apprentissage profond, de la régression logistique aux réseaux neuraux, soulignant la nécessité de traiter des données non linéairement séparables.
Réseaux neuronaux : formation et activation
Explore les réseaux neuronaux, les fonctions d'activation, la rétropropagation et l'implémentation de PyTorch.
Introduction à l'apprentissage automatique : apprentissage supervisé
Introduit l'apprentissage supervisé, couvrant la classification, la régression, l'optimisation des modèles, le surajustement, et les méthodes du noyau.
Deep Learning: Représentations de données et réseaux neuraux
Couvre les représentations de données, le sac de mots, les histogrammes, le prétraitement des données et les réseaux neuronaux.
Régression logistique : Interprétation probabiliste
Couvre l'interprétation probabiliste de la régression logistique, la régression multinomiale, le KNN, les hyperparamètres et la malédiction de la dimensionnalité.
Théorème d'approximation universelle: MLP
Couvre les perceptrons multicouches (MLP) et leur application de la classification à la régression, y compris le théorème d'approximation universelle et les défis liés aux gradients.
Optimisation dans l'apprentissage automatique: Gradient Descent
Couvre l'optimisation dans l'apprentissage automatique, en mettant l'accent sur la descente par gradient pour la régression linéaire et logistique, la descente par gradient stochastique et des considérations pratiques.
Réseaux neuronaux : formation et optimisation
Explore la formation, l'optimisation et les considérations environnementales des réseaux neuronaux, avec des informations sur les clusters PCA et K-means.
Représentation des données : PCA
Couvre la représentation des données à l'aide de PCA pour la réduction de la dimensionnalité, en se concentrant sur la préservation du signal et l'élimination du bruit.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.