Explore l'apprentissage automatique fédéré et la confidentialité différentielle dans l'apprentissage automatique, en discutant des attaques, des défenses et des défis.
Explore la sécurité de l'apprentissage automatique, y compris le vol de modèles, la modification des extrants, les conditions conflictuelles et les défis liés à la protection de la vie privée, soulignant l'importance de corriger les biais dans les modèles d'apprentissage automatique.
Explore les fondamentaux de l'apprentissage automatique et les risques liés à la vie privée, en mettant l'accent sur les attaques contre la vie privée et l'apprentissage automatique collaboratif.
Explore les technologies de protection de la vie privée, la protection des données, les risques de surveillance et les technologies d'amélioration de la vie privée pour la vie privée sociale et institutionnelle.
Explore l'intersection entre l'apprentissage automatique et la cryptographie, en mettant l'accent sur l'apprentissage automatique sûr à travers des outils et des modèles cryptographiques.
Introduit un cours sur les technologies d'amélioration de la protection de la vie privée couvrant divers mécanismes et mettant l'accent sur la protection de la vie privée en tant que bien de sécurité.
Explore la sensibilité des données de localisation, l'inférence des points d'intérêt et les techniques de protection de la confidentialité des localisations.