Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit les bases de la connectomique cérébrale, y compris la terminologie, le prétraitement des données, l'IRM fonctionnelle, les mesures de connectivité et la structure modulaire.
Explore l'estimation stochastique du modèle de bloc, le regroupement spectral, la modularité du réseau, la matrice laplacienne et le regroupement des moyennes k.
Explore le modèle d'émission aléatoire du champ sur des graphiques aléatoires, en discutant des mises à jour de la propagation des croyances et de la dynamique des populations.
Explore la structure et les propriétés des réseaux, y compris les réseaux de rencontres et de protéines, les effets de petit monde, les hubs et les propriétés sans échelle.
Explore les processus de branchement dans les réseaux, la généalogie et l'avalanche d'activité, en discutant de la distribution de la taille des grappes dans la percolation des MF.
Couvre les paradigmes algorithmiques pour les problèmes de graphique dynamique, y compris la connectivité dynamique, la décomposition de l'expansion et le regroupement local, brisant les barrières dans les problèmes de connectivité k-vertex.
Couvre la théorie de la percolation, les polymères absorbés, les molécules géantes, la transition de phase, les hypothèses déchelle et le comportement universel dans les modèles de percolation.
Couvre les bases de la connectomique cérébrale, y compris les réseaux du cerveau, la terminologie, les schémas de données, le prétraitement, la connectivité des noeuds et la structure fonctionnelle du connectome.
Explore la transduction et le déclassement dans les dispositifs micro/nanomécaniques, en mettant l'accent sur les sources sonores et le traitement des signaux.