Distributions de probabilités dans les études environnementales
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la dépendance dans les vecteurs aléatoires, couvrant la densité articulaire, l'indépendance conditionnelle, la covariance et les fonctions génératrices de moment.
Se penche sur les estimateurs de vraisemblance maximale, leurs propriétés et leur comportement asymptotique, en mettant l'accent sur la cohérence et la normalité asymptotique.
Introduit des statistiques inférentielles, couvrant l'échantillonnage, la tendance centrale, la dispersion, les histogrammes, les scores z et la distribution normale.
Couvre les distributions conditionnelles et les corrélations dans les statistiques multivariées, y compris la variance partielle et la covariance, avec les applications aux distributions non normales.
Couvre les variables aléatoires, les espaces déchantillons, les distributions de probabilité, les fonctions, la valeur attendue, la variance et les estimations.
Explore la covariance, la dépendance statistique, la relation éducation-fertilité, les tests d'hypothèse et les statistiques de comparaison pour des résultats continus.
Explore les modèles thématiques, les modèles de mélange gaussien, la répartition des dirichlets latents et l'inférence variationnelle dans la compréhension des structures latentes à l'intérieur des données.