Explore l'apprentissage supervisé en économétrie financière, en mettant l'accent sur les algorithmes de classification comme Naive Bayes et la régression logistique.
Explore les arbres de décision pour la classification, l'entropie, le gain d'information, l'encodage à chaud, l'optimisation de l'hyperparamètre et les forêts aléatoires.
Discute des arbres de décision et des forêts aléatoires, en se concentrant sur leur structure, leur optimisation et leur application dans les tâches de régression et de classification.
Discute des arbres de régression, des méthodes d'ensemble et de leurs applications dans la prévision des prix des voitures d'occasion et des rendements des stocks.
Explore la classification des images en utilisant des arbres de décision et des forêts aléatoires pour réduire la variance et améliorer la robustesse du modèle.
Explore l'apprentissage supervisé en matière de tarification des actifs, en mettant l'accent sur les défis de la prévision du rendement des actions et l'évaluation des modèles.
Explore les algorithmes de classification génératifs et discriminatifs, en mettant l'accent sur leurs applications et leurs différences dans les tâches d'apprentissage automatique.