Lie bracket of vector fieldsIn the mathematical field of differential topology, the Lie bracket of vector fields, also known as the Jacobi–Lie bracket or the commutator of vector fields, is an operator that assigns to any two vector fields X and Y on a smooth manifold M a third vector field denoted [X, Y]. Conceptually, the Lie bracket [X, Y] is the derivative of Y along the flow generated by X, and is sometimes denoted ("Lie derivative of Y along X"). This generalizes to the Lie derivative of any tensor field along the flow generated by X.
Théorie naïve des ensemblesLes ensembles sont d'une importance fondamentale en mathématiques ; en fait, de manière formelle, la mécanique interne des mathématiques (nombres, relations, fonctions, etc.) peut se définir en termes d'ensembles. Il y a plusieurs façons de développer la théorie des ensembles et plusieurs théories des ensembles existent. Par théorie naïve des ensembles, on entend le plus souvent un développement informel d'une théorie des ensembles dans le langage usuel des mathématiques, mais fondée sur les axiomes de la théorie des ensembles de Zermelo ou de Zermelo-Fraenkel avec axiome du choix dans le style du livre Naive Set Theory de Paul Halmos.
Espace de Hilbertvignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Géométrie de contactLa géométrie de contact est la partie de la géométrie différentielle qui étudie les formes et structures de contact. Elle entretient d'étroits liens avec la géométrie symplectique, la géométrie complexe, la théorie des feuilletages de codimension 1 et les systèmes dynamiques. La géométrie de contact classique est née de l'étude de la thermodynamique et de l'optique géométrique. Une structure de contact sur une variété est un champ d'hyperplans c'est-à-dire la donnée, en tout point de la variété, d'un hyperplan dans l'espace tangent.
2 (nombre)2 (deux) est l'entier naturel qui suit 1 et qui précède 3. La plupart des systèmes de numération possèdent un chiffre pour signifier le nombre deux. Deux (chiffre) Le chiffre « deux », symbolisé « 2 », est le chiffre arabe servant notamment à signifier le nombre deux. Le chiffre « 2 » n'est pas le seul utilisé dans le monde ; un certain nombre d'alphabets — particulièrement ceux des langues du sous-continent indien et du sud-est asiatique — utilisent des chiffres différents, même au sein de la numération indo-arabe.
Dual spaceIn mathematics, any vector space has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on together with the vector space structure of pointwise addition and scalar multiplication by constants. The dual space as defined above is defined for all vector spaces, and to avoid ambiguity may also be called the . When defined for a topological vector space, there is a subspace of the dual space, corresponding to continuous linear functionals, called the continuous dual space.
SymétrieLa symétrie est une propriété d'un système : c'est lorsque deux parties sont semblables. L'exemple le plus connu est la symétrie en géométrie. De manière générale, un système est symétrique quand on peut permuter ses éléments en laissant sa forme inchangée. Le concept d'automorphisme permet de préciser cette définition. Un papillon, par exemple, est symétrique parce qu'on peut permuter tous les points de la moitié gauche de son corps avec tous les points de la moitié droite sans que son apparence soit modifiée.
Dérivée covarianteEn géométrie différentielle, la dérivée covariante est un outil destiné à définir la dérivée d'un champ de vecteurs sur une variété. Dans le cas où la dérivée covariante existe, il n'existe pas de différence entre la dérivée covariante et la connexion, à part la manière dont elles sont introduites. (Cela est faux quand la dérivée covariante n'existe pas en revanche ).
Tenseur métriqueEn géométrie, et plus particulièrement en géométrie différentielle, le tenseur métrique est un tenseur d'ordre 2 permettant de définir le produit scalaire de deux vecteurs en chaque point d'un espace, et qui est utilisé pour la mesure des longueurs et des angles. Il généralise le théorème de Pythagore. Dans un système de coordonnées donné, le tenseur métrique peut se représenter comme une matrice symétrique, généralement notée , pour ne pas confondre la matrice (en majuscule) et le tenseur métrique g.
Ensemble videvignette|Notation de l'ensemble vide. En mathématiques, l'ensemble vide est l'ensemble ne contenant aucun élément. L'ensemble vide peut être noté d'un O barré, à savoir ∅ ou simplement { }, qui est une paire d'accolades ne contenant qu'une espace, pour représenter un ensemble qui ne contient rien. La notation ∅ a été introduite par André Weil, dans le cadre de l'institution de notations par le groupe Bourbaki. Von Neumann dans son article de 1923, qui est l'une des premières références qui l'aborde, le note O.