CS-401: Applied data analysisThis course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
CS-456: Deep reinforcement learningThis course provides an overview and introduces modern methods for reinforcement learning (RL.) The course starts with the fundamentals of RL, such as Q-learning, and delves into commonly used approac
CS-411: Digital educationThis course addresses the relationship between specific technological features and the learners' cognitive processes. It also covers the methods and results of empirical studies: do student actually l
EE-566: Adaptation and learningIn this course, students learn to design and master algorithms and core concepts related to inference and learning from data and the foundations of adaptation and learning theories with applications.
CS-433: Machine learningMachine learning methods are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and pr
COM-406: Foundations of Data ScienceWe discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
CS-423: Distributed information systemsThis course introduces the foundations of information retrieval, data mining and knowledge bases, which constitute the foundations of today's Web-based distributed information systems.