Let P be a set of n > d points in for d >= 2. It was conjectured by Zvi Schur that the maximum number of (d-1)-dimensional regular simplices of edge length diam(P), whose every vertex belongs to P, is n. We prove this statement under the condition that any ...
We study the impact of metric constraints on the realizability of planar graphs. Let G be a subgraph of a planar graph H (where H is the "host" of G). The graph G is free in H if for every choice of positive lengths for the edges of G, the host H has a pla ...
We show that the maximum total perimeter of k plane convex bodies with disjoint interiors lying inside a given convex body C is equal to , in the case when C is a square or an arbitrary triangle. A weaker bound is obtained for general plane convex bodies. ...
By a polygonization of a finite point set S in the plane we understand a simple polygon having S as the set of its vertices. Let B and R be sets of blue and red points, respectively, in the plane such that is in general position, and the convex hull of B c ...
Let d(1) < d(2) < ... denote the set of all distances between two vertices of a convex n-gon. We show that the number of pairs of vertices at distance d(2) from one another is at most n + O(1). (C) 2013 Elsevier B.V. All rights reserved. ...
In a seminal paper published in 1946, Erd ̋os initiated the investigation of the distribution of distances generated by point sets in metric spaces. In spite of some spectacular par- tial successes and persistent attacks by generations of mathe- maticians, ...
The inverse degree of a graph is the sum of the reciprocals of the degrees of its vertices. We prove that in any connected planar graph, the diameter is at most 5/2 times the inverse degree, and that this ratio is tight. To develop a crucial surgery method ...