By a polygonization of a finite point set S in the plane we understand a simple polygon having S as the set of its vertices. Let B and R be sets of blue and red points, respectively, in the plane such that is in general position, and the convex hull of B c ...
We study the impact of metric constraints on the realizability of planar graphs. Let G be a subgraph of a planar graph H (where H is the "host" of G). The graph G is free in H if for every choice of positive lengths for the edges of G, the host H has a pla ...
Let P be a set of n > d points in for d >= 2. It was conjectured by Zvi Schur that the maximum number of (d-1)-dimensional regular simplices of edge length diam(P), whose every vertex belongs to P, is n. We prove this statement under the condition that any ...
In a seminal paper published in 1946, Erd ̋os initiated the investigation of the distribution of distances generated by point sets in metric spaces. In spite of some spectacular par- tial successes and persistent attacks by generations of mathe- maticians, ...
Let d(1) < d(2) < ... denote the set of all distances between two vertices of a convex n-gon. We show that the number of pairs of vertices at distance d(2) from one another is at most n + O(1). (C) 2013 Elsevier B.V. All rights reserved. ...
We show that the maximum total perimeter of k plane convex bodies with disjoint interiors lying inside a given convex body C is equal to , in the case when C is a square or an arbitrary triangle. A weaker bound is obtained for general plane convex bodies. ...
The inverse degree of a graph is the sum of the reciprocals of the degrees of its vertices. We prove that in any connected planar graph, the diameter is at most 5/2 times the inverse degree, and that this ratio is tight. To develop a crucial surgery method ...