Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
A general approach to the direct deoxygenative transformation of primary, secondary, and tertiary alcohols has been developed. It undergoes through phosphoranyl radical intermediates generated by the addition of exogenous iodine radical to trivalent alkoxy ...
Modeling the 3D internal crack under compression entails complex fracture mechanics (mode I-II-III fracture), resulting in substantial computational costs and challenges in characterizing fracture morphology characterization for Phase Field Method (PFM) si ...
A recent study revealed the structure of the Ni-containing active site of lactate racemase. The Ni is coordinated by a SCS pincer ligand derived from a nicotinic acid mononucleotide. ...
beta,gamma,-Unsaturated ketones are an important class of organic molecules. Herein, copper catalysis has been developed for the synthesis of --unsaturated ketones through 1,2-addition of -carbonyl iodides to alkynes. The reactions exhibit wide substrate s ...
Pincer complexes are widely applied in homogeneous catalysis. However, only very recently has the first pincer complex been discovered in the active site of a metalloenzyme, namely, lactate racemase. Here, we report a synthetic model of the active site of ...
The greenhouse gas and energy carrier methane is produced on Earth mainly by methanogenic archaea. In the hydrogenotrophic methanogenic pathway the reduction of one CO2 to one methane molecule requires four molecules of H-2 containing eight electrons. Four ...
[Fe]-hydrogenase hosts an iron-guanylylpyridinol (FeGP) cofactor. The FeGP cofactor contains a pyridinol ring substituted with GMP, two methyl groups, and an acylmethyl group. HcgC, an enzyme involved in FeGP biosynthesis, catalyzes methyl transfer from S- ...
[Fe]-Hydrogenase catalyzes the hydrogenation of a biological substrate via the heterolytic splitting of molecular hydrogen. While many synthetic models of [Fe]-hydrogenase have been prepared, none yet are capable of activating H-2 on their own. Here, we re ...
Previous retrosynthetic and isotope-labeling studies have indicated that biosynthesis of the iron guanylylpyridinol (FeGP) cofactor of [Fe]-hydrogenase requires a methyltransferase. This hypothetical enzyme covalently attaches the methyl group at the 3-pos ...
Wiley-Blackwell2016
, , ,
[Fe]-Hydrogenase catalyses the reversible hydrogenation of a methenyltetrahydromethanopterin substrate, which is an intermediate step during the methanogenesis from CO2 and H-2. The active site contains an iron-guanylylpyridinol cofactor, in which Fe2+ is ...