Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
As modern machine learning continues to achieve unprecedented benchmarks, the resource demands to train these advanced models grow drastically. This has led to a paradigm shift towards distributed training. However, the presence of adversariesâwhether ma ...
Federated learning (FL) is a machine learning setting where many clients (e.g., mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g., service provider), while keeping the training data decen ...
Byzantine robustness has received significant attention recently given its importance for distributed and federated learning. In spite of this, we identify severe flaws in existing algorithms even when the data across the participants is identically distri ...
Decentralized machine learning is a promising emerging paradigm in view of global challenges of data ownership and privacy. We consider learning of linear classification and regression models, in the setting where the training data is decentralized over ma ...