Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Prokaryotes have the ability to walk on surfaces using type IV pili (TFP), a motility mechanism known as twitching(1,2). Molecular motors drive TFP extension and retraction, but whether and how these movements are coordinated is unknown(3). Here, we reveal ...
In the wild, bacteria are predominantly associated with surfaces as opposed to existing as free-swimming, isolated organisms. They are thus subject to surface-specific mechanics, including hydrodynamic forces, adhesive forces, the rheology of their surroun ...
Bacterial species take on a wide variety of shapes, but the mechanisms by which specific shapes evolve have remained poorly understood. A recent study demonstrates that two Asticcacaulis species repurposed an ancestral regulatory protein to rewire the modu ...
Collective behavior in spatially structured groups, or biofilms, is the norm among microbes in their natural environments. Though biofilm formation has been studied for decades, tracing the mechanistic and ecological links between individual cell morpholog ...
The transport of electrolytes in electric fields is a ubiquitous phenomenon commonly harnessed in microfluidics. A classic leaky dielectric model for flow generated by electric fields accurately predicts electrohydrodynamic transport phenomenon but is vali ...
Type IV pili (TFP) function as mechanosensors to trigger acute virulence programs in Pseudomonas aeruginosa. On surface contact, TFP retraction activates the Chp chemosensory system phosphorelay to upregulate 3', 5'-cyclic monophosphate (cAMP) production a ...
Bacteria have evolved a wide range of sensing systems to appropriately respond to environmental signals. Here we demonstrate that the opportunistic pathogen Pseudomonas aeruginosa detects contact with surfaces on short timescales using the mechanical activ ...
Microorganisms navigate and divide on surfaces to form multicellular structures called biofilms, the most widespread survival strategy found in the bacterial world. One common assumption is that cellular components guide the spatial architecture and arrang ...
Each bacterial species has a characteristic shape, but the benefits of specific morphologies remain largely unknown. To understand potential functions for cell shape, we focused on the curved bacterium Caulobacter crescentus. Paradoxically, C. crescentus c ...
We present and demonstrate a novel assay for the detection and quantification of microRNA (miRNA) that leverages isotachophoresis (ITP) and molecular beacon (MB) hybridization. We use ITP to selectively preconcentrate miRNA from total RNA. We simultaneousl ...