Collective behavior in spatially structured groups, or biofilms, is the norm among microbes in their natural environments. Though biofilm formation has been studied for decades, tracing the mechanistic and ecological links between individual cell morpholog ...
Microorganisms navigate and divide on surfaces to form multicellular structures called biofilms, the most widespread survival strategy found in the bacterial world. One common assumption is that cellular components guide the spatial architecture and arrang ...
Microbiology and biophysics are converging to advance our understanding of the mechanobiology of microorganisms. In this Review, Dufrene and Persat discuss the physical forces that bacteria experience in their natural environments and the structures that t ...
Prokaryotes have the ability to walk on surfaces using type IV pili (TFP), a motility mechanism known as twitching(1,2). Molecular motors drive TFP extension and retraction, but whether and how these movements are coordinated is unknown(3). Here, we reveal ...
Type IV pili (TFP) function as mechanosensors to trigger acute virulence programs in Pseudomonas aeruginosa. On surface contact, TFP retraction activates the Chp chemosensory system phosphorelay to upregulate 3', 5'-cyclic monophosphate (cAMP) production a ...
The transport of electrolytes in electric fields is a ubiquitous phenomenon commonly harnessed in microfluidics. A classic leaky dielectric model for flow generated by electric fields accurately predicts electrohydrodynamic transport phenomenon but is vali ...