We consider the Gross-Pitaevskii equation describing a dipolar Bose-Einstein condensate without external confinement. We first consider the unstable regime, where the nonlocal nonlinearityis neither positive nor radially symmetric and standing states are k ...
We consider the pure-power defocusing nonlinear Klein-Gordon equation, in the H-1-subcritical case, posed on the product space R-d X T, where T is the one-dimensional flat torus. In this framework, we prove that scattering holds for any initial data belong ...
We study the Cauchy problem for the half Ginzburg- Landau-Kuramoto (hGLK) equation with the second order elliptic operator having rough coecients and potential type perturbation. The blow-up of solutions for hGLK equation with non-positive nonlinearity is ...
We consider a Gross-Pitaevskii equation which appears as a model in the description of dipolar Bose-Einstein condensates, without a confining external trapping potential. We describe the asymptotic dynamics of solutions to the corresponding Cauchy problem ...
Given any solutionuof the Euler equations which is assumed to have some regularity in space-in terms of Besov norms, natural in this context-we show by interpolation methods that it enjoys a corresponding regularity in time and that the associated pressure ...
We study the formation of singularities for cylindrical symmetric solutions to the Gross-Pitaevskii equation describing a Dipolar Bose-Einstein condensate. We prove that solutions arising from initial data with energy below the energy of the Ground State a ...