Positron emission tomography (PET) and nuclear magnetic resonance spectroscopy (MRS) are two biomedical measurement techniques developed in the end of the XXth century, which drastically improved the amount of accessible information available in vivo. PET became popular through the most widely used tracer, fluorodeoxyglucose (FDG), which enables the measurement of the local glucose utilization and is nowadays routinely applied in clinical practice. Nuclear magnetic resonance is used in a large array of applications such as in analytical chemistry or chemical structure determination and is essentially known for its versatile medical imaging capabilities, grouped under the name of magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). In vivo MRS measures concentrations of metabolites by interacting with various nuclei such as 1H, 13C or 15N, with the major asset that MRS enables the identification of the chemical position at which the detected nuclei is located in the measured molecule. When coupled with labeled substrate infusions, dynamic MRS gives the opportunity to probe specific biochemical reactions directly in vivo, which opens the way to a wide range of metabolic studies. However, the correct interpretation of the elaborate dynamic labeling data acquired either with MRS or PET tracer experiments requires the application of adapted metabolic models to derive quantitative metabolic rates characterizing the biochemical processes under study. The work of this thesis involves both PET and MRS studies of brain energy metabolism in rodents and focuses on the development of adapted metabolic models to derive reliable metabolic fluxes characterizing various brain metabolic processes, such as glucose consumption, glial and neuronal oxidative metabolism and neurotransmission. FDG-PET enables the measurement of the cerebral metabolic rate of glucose (CMRGlc) using a three-compartment metabolic model for FDG transport across the blood-brain barrier and FDG phosphorylation to FDG-6P. Although this method is well established, a main drawback of CMRGlc measurement with FDG-PET is the necessity to characterize the available FDG concentration in the plasma over the experiment duration, the so-called arterial input function. This constraint is a strong limitation for preclinical studies in rodents, due to their low blood volume. We developed therefore a new method to extract the FDG input function directly from the PET images in rats and mice, using the time-activity curve of a voxel located in the inferior vena cava. The method was validated by comparison with a dedicated external blood counter and manual blood sampling. Using this method, a CMRGlc of ~0.22 μmol/g/min was determined in the mouse cortex. Glial oxidative metabolism can be specifically assessed using glial specific substrates, in particular [1-11C] acetate. However, no existing metabolic model described the 11C tissue activity curve in terms of neuroglial energy metabolism
Jean-Philippe Thiran, Gabriel Girard, Elda Fischi Gomez, Philipp Johannes Koch, Liana Okudzhava
Jean-Philippe Thiran, Gabriel Girard, Elda Fischi Gomez, Liana Okudzhava