Linear least squaresLinear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals. Numerical methods for linear least squares include inverting the matrix of the normal equations and orthogonal decomposition methods. The three main linear least squares formulations are: Ordinary least squares (OLS) is the most common estimator.
Polynôme de BernsteinLes polynômes de Bernstein, nommés ainsi en l'honneur du mathématicien russe Sergueï Bernstein (1880-1968), permettent de donner une démonstration constructive et probabilistedu théorème d'approximation de Weierstrass. Ils sont également utilisés dans la formulation générale des courbes de Bézier. Pour un degré m ≥ 0, il y a m + 1 polynômes de Bernstein B, ..., B définis, sur l'intervalle [0 ; 1], par où les sont les coefficients binomiaux. Les m + 1 polynômes de Bernstein forment une base de l'espace vectoriel des polynômes de degré au plus m.