Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Finger trackingIn the field of gesture recognition and , finger tracking is a high-resolution technique developed in 1969 that is employed to know the consecutive position of the fingers of the user and hence represent objects in 3D. In addition to that, the finger tracking technique is used as a tool of the computer, acting as an external device in our computer, similar to a keyboard and a mouse. The finger tracking system is focused on user-data interaction, where the user interacts with virtual data, by handling through the fingers the volumetric of a 3D object that we want to represent.
Méthode des k plus proches voisinsEn intelligence artificielle, plus précisément en apprentissage automatique, la méthode des k plus proches voisins est une méthode d’apprentissage supervisé. En abrégé KPPV ou k-PPV en français, ou plus fréquemment k-NN ou KNN, de l'anglais k-nearest neighbors. Dans ce cadre, on dispose d’une base de données d'apprentissage constituée de N couples « entrée-sortie ». Pour estimer la sortie associée à une nouvelle entrée x, la méthode des k plus proches voisins consiste à prendre en compte (de façon identique) les k échantillons d'apprentissage dont l’entrée est la plus proche de la nouvelle entrée x, selon une distance à définir.
Art algorithmiqueL'art algorithmique, également connu sous le nom d'art des algorithmes, est l'art, et plus précisément l'art visuel, dont la conception est générée par un algorithme. Les artistes algorithmiques sont parfois appelés algoristes. L'art algorithmique est un sous-domaine de l'art génératif (généré par un système autonome) et est lié à l'art des systèmes (influencé par la théorie des systèmes). L'art fractal est un exemple d'art algorithmique. gauche|vignette|Figures géométriques arabes dans le temple de Darb-e Emam à Isfahan, précurseurs de l'art algorithmique.
Analyse discriminante linéaireEn statistique, l’analyse discriminante linéaire ou ADL (en anglais, linear discriminant analysis ou LDA) fait partie des techniques d’analyse discriminante prédictive. Il s’agit d’expliquer et de prédire l’appartenance d’un individu à une classe (groupe) prédéfinie à partir de ses caractéristiques mesurées à l’aide de variables prédictives. Dans l’exemple de l'article Analyse discriminante, le fichier Flea Beetles, l’objectif est de déterminer l’appartenance de puces à telle ou telle espèce à partir de la largeur et de l’angle de son édéage (partie des organes génitaux mâles de l'insecte.
Reconnaissance de formesthumb|Reconnaissance de forme à partir de modélisation en 3D La reconnaissance de formes (ou parfois reconnaissance de motifs) est un ensemble de techniques et méthodes visant à identifier des régularités informatiques à partir de données brutes afin de prendre une décision dépendant de la catégorie attribuée à ce motif. On considère que c'est une branche de l'intelligence artificielle qui fait largement appel aux techniques d'apprentissage automatique et aux statistiques.
Opinion miningEn informatique, l'opinion mining (aussi appelé sentiment analysis) est l'analyse des sentiments à partir de sources textuelles dématérialisées sur de grandes quantités de données (big data). Ce procédé apparait au début des années 2000 et connait un succès grandissant dû à l'abondance de données provenant de réseaux sociaux, notamment celles fournies par Twitter. L'objectif de l’opinion mining est d'analyser une grande quantité de données afin d'en déduire les différents sentiments qui y sont exprimés.
Informatique affectiveL’informatique affective ou informatique émotionnelle (en anglais, affective computing) est l'étude et le développement de systèmes et d'appareils ayant les capacités de reconnaître, d’exprimer, de synthétiser et modéliser les émotions humaines. C'est un domaine de recherche interdisciplinaire couvrant les domaines de l'informatique, de la psychologie et des sciences cognitives qui consiste à étudier l’interaction entre technologie et sentiments.
Tensor Processing Unitvignette|Un Tensor Processing Unit 3.0 datant de mai 2016 Un Tensor Processing Unit (TPU, unité de traitement de tenseur) est un circuit intégré spécifique pour une application (ASIC), développé par Google spécifiquement pour accélérer les systèmes d'intelligence artificielle par réseaux de neurones. Les TPU ont été annoncés en 2016 au Google I/O, lorsque la société a déclaré les utiliser dans leurs centres de données depuis plus d'un an.
Art créé par intelligence artificiellevignette|Portrait d'Edmond de Belamy, œuvre créée grâce à une intelligence artificielle par le collectif français Obvious en 2018. L'art créé par intelligence artificielle (en Artificial intelligence art ou AI art) est toute œuvre d'art créée par une personne avec l'interventionnisme d'une intelligence artificielle. Il existe de nombreux mécanismes pour créer de l'art IA, notamment la génération procédurale d'images basée sur des règles à l'aide de modèles mathématiques, des algorithmes qui simulent des coups de pinceau et d'autres effets de peinture, et des algorithmes d'intelligence artificielle ou d'apprentissage profond tels que les réseaux antagonistes génératifs et les transformateurs.