En intelligence artificielle, plus précisément en apprentissage automatique, la méthode des k plus proches voisins est une méthode d’apprentissage supervisé. En abrégé KPPV ou k-PPV en français, ou plus fréquemment k-NN ou KNN, de l'anglais k-nearest neighbors. Dans ce cadre, on dispose d’une base de données d'apprentissage constituée de N couples « entrée-sortie ». Pour estimer la sortie associée à une nouvelle entrée x, la méthode des k plus proches voisins consiste à prendre en compte (de façon identique) les k échantillons d'apprentissage dont l’entrée est la plus proche de la nouvelle entrée x, selon une distance à définir. Puisque cet algorithme est basé sur la distance, la normalisation peut améliorer sa précision. Par exemple, dans un problème de classification, on retiendra la classe la plus représentée parmi les k sorties associées aux k entrées les plus proches de la nouvelle entrée x. En reconnaissance de forme, l'algorithme des k plus proches voisins (k-NN) est une méthode non paramétrique utilisée pour la classification et la régression. Dans les deux cas, il s'agit de classer l'entrée dans la catégorie à laquelle appartient les k plus proches voisins dans l'espace des caractéristiques identifiées par apprentissage. Le résultat dépend si l'algorithme est utilisé à des fins de classification ou de régression : en classification k-NN, le résultat est une classe d'appartenance. Un objet d'entrée est classifié selon le résultat majoritaire des statistiques de classes d'appartenance de ses k plus proches voisins, (k est un nombre entier positif généralement petit). Si k = 1, alors l'objet est affecté à la classe d'appartenance de son proche voisin. en régression k-NN, le résultat est la valeur pour cet objet. Cette valeur est la moyenne des valeurs des k plus proches voisins. La méthode k-NN est basée sur l'apprentissage préalable, ou l'apprentissage faible, où la fonction est évaluée localement, le calcul définitif étant effectué à l'issue de la classification. L'algorithme k-NN est parmi les plus simples des algorithmes de machines learning.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.