Théorie de la démonstrationLa théorie de la démonstration, aussi connue sous le nom de théorie de la preuve (de l'anglais proof theory), est une branche de la logique mathématique. Elle a été fondée par David Hilbert au début du . Hilbert a proposé cette nouvelle discipline mathématique lors de son célèbre exposé au congrès international des mathématiciens en 1900 avec pour objectif de démontrer la cohérence des mathématiques.
Démonstration (logique et mathématiques)vignette| : un des plus vieux fragments des Éléments d'Euclide qui montre une démonstration mathématique. En mathématiques et en logique, une démonstration est un ensemble structuré d'étapes correctes de raisonnement. Dans une démonstration, chaque étape est soit un axiome (un fait acquis), soit l'application d'une règle qui permet d'affirmer qu'une proposition, la conclusion, est une conséquence logique d'une ou plusieurs autres propositions, les prémisses de la règle.
Proof (truth)A proof is sufficient evidence or a sufficient argument for the truth of a proposition. The concept applies in a variety of disciplines, with both the nature of the evidence or justification and the criteria for sufficiency being area-dependent. In the area of oral and written communication such as conversation, dialog, rhetoric, etc., a proof is a persuasive perlocutionary speech act, which demonstrates the truth of a proposition.
Proof by contradictionIn logic, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition, by showing that assuming the proposition to be false leads to a contradiction. Although it is quite freely used in mathematical proofs, not every school of mathematical thought accepts this kind of nonconstructive proof as universally valid. More broadly, proof by contradiction is any form of argument that establishes a statement by arriving at a contradiction, even when the initial assumption is not the negation of the statement to be proved.
Fermionic fieldIn quantum field theory, a fermionic field is a quantum field whose quanta are fermions; that is, they obey Fermi–Dirac statistics. Fermionic fields obey canonical anticommutation relations rather than the canonical commutation relations of bosonic fields. The most prominent example of a fermionic field is the Dirac field, which describes fermions with spin-1/2: electrons, protons, quarks, etc. The Dirac field can be described as either a 4-component spinor or as a pair of 2-component Weyl spinors.
Démonstration constructiveUne première vision d'une démonstration constructive est celle d'une démonstration mathématique qui respecte les contraintes des mathématiques intuitionnistes, c'est-à-dire qui ne fait pas appel à l'infini, ni au principe du tiers exclu. Ainsi, démontrer l'impossibilité de l'inexistence d'un objet ne constitue pas une démonstration constructive de son existence : il faut pour cela en exhiber un et expliquer comment le construire. Si une démonstration est constructive, on doit pouvoir lui associer un algorithme.
Proof calculusIn mathematical logic, a proof calculus or a proof system is built to prove statements. A proof system includes the components: Language: The set L of formulas admitted by the system, for example, propositional logic or first-order logic. Rules of inference: List of rules that can be employed to prove theorems from axioms and theorems. Axioms: Formulas in L assumed to be valid. All theorems are derived from axioms. Usually a given proof calculus encompasses more than a single particular formal system, since many proof calculi are under-determined and can be used for radically different logics.
Classe socialeLa notion de classe sociale désigne, dans son sens le plus large, un groupe social de grande dimension (ce qui le distingue des simples professions) pris dans une hiérarchie sociale de fait et non de droit (ce qui le distingue des ordres et des castes). Si elle constitue une pièce centrale des critiques anarchiste et marxiste du capitalisme ayant tous deux pour objectif d'instaurer une société sans classes, elle ne leur est pas propre : cette notion fait même partie du lexique sociologique courant.
Modèle de Hubbardvignette|Modèle de Hubbard à deux dimensions. Le modèle de Hubbard est un modèle étudié en théorie de la matière condensée. Il décrit des fermions (généralement des électrons) sur un réseau (en général les atomes qui forment un solide), qui interagissent uniquement lorsqu'ils se trouvent sur le même site (c'est-à-dire sur le même atome). Ce modèle a été introduit en 1963 à peu près simultanément par , Martin C. Gutzwiller et Junjiro Kanamori. Il est parfois appelé modèle de Hubbard-Gutzwiller-Kanamori pour cette raison.
Fermion lourdEn physique du solide, les matériaux à fermions lourds, souvent appelés simplement « fermions lourds », sont une classe particulière d'intermétalliques contenant des atomes ayant des électrons 4f (lanthanides) ou 5f (actinides) dans des bandes incomplètes et qui sont par conséquent porteurs de moments magnétiques localisés. Il s'agit par exemple de cations de cérium, d'ytterbium ou d'uranium dont des électrons 4f ou 5f, provenant d'orbitales f partiellement remplies, interagissent avec les électrons de la bande de conduction de l'intermétallique, formant par hybridation des quasi-particules dont la masse effective est sensiblement supérieure à celle des électrons libres.