vignette| : un des plus vieux fragments des Éléments d'Euclide qui montre une démonstration mathématique.
En mathématiques et en logique, une démonstration est un ensemble structuré d'étapes correctes de raisonnement.
Dans une démonstration, chaque étape est soit un axiome (un fait acquis), soit l'application d'une règle qui permet d'affirmer qu'une proposition, la conclusion, est une conséquence logique d'une ou plusieurs autres propositions, les prémisses de la règle. Les prémisses sont soit des axiomes, soit des propositions déjà obtenues comme conclusions de l'application d'autres règles. Une proposition qui est la conclusion de l'étape ultime d'une démonstration est un théorème.
Le terme « preuve » est parfois employé comme un synonyme de « démonstration » .
La démonstration est foncièrement différente de l'argumentation, qui est une autre forme de raisonnement, employant des arguments qualitatifs, en faisant référence éventuellement à des données chiffrées, dans le but de pousser quelqu'un à agir.
Dans le style de Fitch pour la déduction naturelle, une démonstration est . En déduction naturelle, une démonstration est un arbre.
De manière générale, une démonstration est un .
Dans son documentaire consacré au dernier théorème de Fermat, Simon Singh demande à des mathématiciens parmi lesquels John Conway, Bary Mazur, Ken Ribet, John Coates, Richard Taylor de préciser la notion de démonstration en mathématiques. Ils proposent, informellement : .
On trouve les premières démonstrations rigoureuses chez Euclide.
Avant l'avènement de la logique formelle, le concept de la démonstration absolue renvoyait à l'idée d'une démonstration prouvant incontestablement la proposition à démontrer, décisive pour tous, partout et toujours, montrant que la solution donnée était implicitement admise par toutes personnes raisonnées.
Cependant, le concept même de la démonstration requiert une connaissance antécédente afin d'établir les prémisses. L'idée d'une démonstration absolue, c'est-à-dire sans aucun supposé, apparaît alors absurde puisque la démonstration est un discours qui va du connu à l'inconnu.