Phase separation and the segregation principle in the infinite-U spinless Falicov-Kimball model
Publications associées (34)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We introduce a minimal model describing the physics of classical two-dimensional (2D) frustrated Heisenberg systems, where spins order in a nonplanar way at T=0. This model, consisting of coupled trihedra (or Ising-RP3 model), encompasses Ising (chiral) de ...
From cosmology to the microscopic scales of the quantum world, the study of topological excitations is essential for the understanding of phase conformation and phase transitions. Quantum fluids are convenient systems to investigate topological entities be ...
We simulate the Shastry-Sutherland model in two dimensions by means of infinite projected entangled-pair states (iPEPS)-a variational tensor network method where the accuracy can be systematically controlled by the so-called bond dimension. Besides the wel ...
The enthalpies of formation of the intermetallic compounds in the Ge-Ni binary system have been determined by calorimetric measurement and first-principles calculations. Based on the results obtained and information available in the literature, the phase d ...
The phase diagram of the classical J1–J2 model on the kagome lattice is investigated by using extensive Monte Carlo simulations. In a realistic range of parameters, this model has a low-temperature chiral-ordered phase without long-range spin order. We sho ...
We study the quantum phase transition of the 1D weakly interacting Bose gas in the presence of disorder. We characterize the phase transition as a function of disorder and interaction strengths, by inspecting the long-range behavior of the one-body density ...
Phase equilibria in the CaO-Al2O3-Fe2O3-SO3 system have been studied, mainly at 1325 degrees C. In particular the solid solution compositions of ye'elimite Ca-4(Al6O12)SO4 and brownmillerite (C-2(A,F)) phases have been analysed and used to estimate the com ...
With the aid of molecular simulation techniques (molecular dynamics, grand-canonical Monte Carlo, and reactive flux correlation function RFCF), the influence of the external surface on the equilibrium permeation of methane and ethane into and out of an AFI ...
Recent progress in simulation methodologies and in computer power allow first-principles simulations of condensed systems with Born–Oppenheimer electronic energies obtained by quantum Monte Carlo methods. Computing free energies and therefore getting a qua ...
We use in situ observations by variable temperature transmission electron microscopy on Ga drops at the tips of GaAs nanowires to investigate the phase behavior of nanoscale Ga. Experiments on pure Ga drops are compared with drops containing well-defined l ...